In this step the micro controller board, battery, and LEDs will be connected. This will require the two piece frame with LEDs assembled in the previous step, the 3D printed chassis for the board and battery, complete micro controller board, and LiPo battery. Six pin header, solder, and some hardware will also be used at this point.

  1. Attach board and battery to chassis and connect battery.
    1. Begin by soldering the right angle six pen header to the designated through holes on the board, making sure it is angled up and away from components on surface of micro controller.
    2. Screw board to 3D printed chassis. First press two M2 hex nuts into hex shaped indentations on one side of chassis. Set micro controller board, components up, header pins facing toward indicator, on flat surface of chassis. Align the two screw holes on board with those on chassis and affix using 4mm M2 screws, through hex nuts on the opposite side.
    3. Slide battery into holder on underside of carriage, careful not to scrape against any screw heads that may be exposed. Using the designated screw lengths should prevent any obstruction. The battery will fit tightly.
    4. Connect battery to board. Although a plug is possible and exists in later versions of this device, the battery will be soldered directly to the board here. For this the plug attached to the battery leads will be removed. Cut each wire individually so as not to be shocked or damage the battery. Solder the positive lead, red wire, to hole labeled V+ and the black wire to GND on board where the two holes exist. Be careful not to touch the exposed wire ends together or to other parts of the board.OLYMPUS DIGITAL CAMERA
  2. Wire all LEDs together in the direction designated by arrows on back of each. You will need cuts of wire in two different lengths here — about half an inch for the short distances (14 instances), and two inches for the longer stretches (5 instances). It is helpful to applying a small amount of solder to the LED connections and wire ends first. Using tweezers to hold the wires is helpful. Beginning with the first LED, solder short wires up to the third LED in the column. Use the longer cuts of wire to bridge over to adjacent LED with arrows pointing down. Continue wiring the columns of LEDs together Up one side Down the other with short wires, and from one row to the next with the longer ones. Note that between the 10th and 11th LED the longer cuts of wire need to be used to avoid the upright where the board and battery chassis will be attached to.OLYMPUS DIGITAL CAMERA
  3. Prepare to connect LEDs to board. A third length of wire, about three inches will be used here. While the IcosaLEDron is still unfolded, solder these wires to the first LED. It is helpful to indicate on each wire with a black marker which corresponds to 5v, GND, and DIN. Wait to solder to micro controller.
  4. Attach board and battery carriage to IcosaLEDron net. Notice the two wedge shaped uprights designed for attaching chassis assembly to frame. First screw back of chassis, side opposite header pins, to the center upright using two 4mm screws. Fold the net so that the front of the chassis assembly’s screw holes correspond to those on the upright at edge of net, and affix with two more 4mm screws. Half of the IcosaLEDron takes shape, board on top and battery down and inwards.OLYMPUS DIGITAL CAMERA
  5. Connect wires attached to the first LED from step 3 above to micro controller board. With the IcosaLEDron half folded up, solder the corresponding wires from LED one to the three contacts on board; 5v on LED to +V on board, Din on LED to DATA on board, and gnd to GND. At this point, the IcosaLEDron will be lighting up and responding to motion.OLYMPUS DIGITAL CAMERA

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>